Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.305
Filtrar
1.
Luminescence ; 39(5): e4738, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719576

RESUMEN

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV-vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10-200 µg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the 'Analytical GREEnness (AGREE)' scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.


Asunto(s)
Ácido Azetidinocarboxílico , Carbono , Dihidropiridinas , Puntos Cuánticos , Espectrometría de Fluorescencia , Dihidropiridinas/análisis , Dihidropiridinas/química , Carbono/química , Ácido Azetidinocarboxílico/análisis , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Puntos Cuánticos/química , Tecnología Química Verde , Comprimidos/análisis , Colorantes Fluorescentes/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Estructura Molecular
2.
Luminescence ; 39(5): e4772, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712470

RESUMEN

The current study presents the first spectrofluorimetric approach for the estimation of lactoferrin, depending on the measurement of its native fluorescence at 337 nm after excitation at 230 nm, without the need for any hazardous chemicals or reagents. It was found that the fluorescence intensity versus concentration calibration plot was linear over the concentration range of 0.1-10.0 µg/mL with quantitation and detection limits of 0.082 and 0.027 µg/mL, respectively. The method was accordingly validated according to the ICH recommendations. The developed method was applied for the estimation of lactoferrin in different dosage forms, including capsules and sachets with high percent recoveries (97.84-102.53) and low %RSD values (<1.95). Lactoferrin is one of the key nutrients in milk powder and a significant nutritional fortifier. In order to assess the quality of milk powder, it is essential to rapidly and accurately quantify the lactoferrin content of the product. Therefore, the presented study was successfully applied for the selective estimation of lactoferrin in milk powder with acceptable percent recoveries (96.45-104.92) and %RSD values (≤3.607). Finally, the green profile of the method was estimated using two assessment tools: Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE), which demonstrated its excellent greenness.


Asunto(s)
Fórmulas Infantiles , Lactoferrina , Espectrometría de Fluorescencia , Lactoferrina/análisis , Fórmulas Infantiles/química , Fórmulas Infantiles/análisis , Espectrometría de Fluorescencia/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Humanos , Lactante , Tecnología Química Verde , Leche/química , Límite de Detección , Animales
3.
Anal Chim Acta ; 1308: 342662, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740449

RESUMEN

BACKGROUND: The ongoing infusion of pharmaceutical and personal care products (PPCPs) into ecosystems sustains a perpetual life cycle and leads to multi-generational exposures. Limited understanding of their environmental impact and their intrinsic ability to induce physiological effect in humans, even at low doses, pose great risks to human health. Few scholarly works have conducted systematic research into the occurrence of PPCPs within potable water systems. Concurrently, the associated monitoring techniques have not been comprehensively examined with regards to the specific nature of drinking water, namely whether the significant presence of disinfectants may influence the detection of PPCPs. RESULTS: A modified approach in terms of detailed investigation of sample preservation and optimization of an in-lab fabricated solid phase extraction (SPE) cartridge filled with DVB-VP and PS-DVB sorbent was proposed. Favorable methodological parameters were achieved, with correlation coefficients spanning from 0.9866 to 0.9998. The LODs of the PPCPs fluctuated from 0.001 to 2 µg L-1, while the LOQs varied from 0.002 to 5 µg L-1. The analysis of spiked samples disclosed a methodological precision of 2.31-9.86 % and a recovery of 52.4-119 %. We utilized the established method for analyzing 14 water samples of three categories (source water, finished water and tap water) from five centralized water supply plants. A total of 24 categories encompassing 72 PPCPs were detected, with the concentrations of PPCPs manifested a marked decrease from source water to finished water and finally to tap water. SIGNIFICANCE: Our research meticulously examined the enhancement and purification effects of widely used commercial SPE cartridges and suggested the use of in-lab fabricated SPE cartridges packed with DVB-VP and PS-DVB adsorbents. We also conducted a systematic evaluation of the need to incorporate ascorbic acid and sodium thiosulfate as preservatives for PPCP measurement, in consideration of the unique characteristics of drinking water matrices, specifically, the significant concentration levels of disinfectants. Furthermore, the proposed method was effectively employed to study the presence of PPCPs in source water, finished water, and tap water collected from centralized water supply plants.


Asunto(s)
Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Preparaciones Farmacéuticas/análisis , Abastecimiento de Agua , Agua Potable/análisis , Cosméticos/análisis , Cosméticos/química , Monitoreo del Ambiente/métodos
4.
J Hazard Mater ; 471: 134255, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669934

RESUMEN

In recent years, large quantities of pharmaceuticals and personal care products (PPCPs) have been discharged into sewers, while the mechanisms of PPCPs enrichment in sewer sediments have rarely been revealed. In this study, three PPCPs (tetracycline, sulfamethoxazole, and triclocarban) were added consecutively over a 90-day experimental period to reveal the mechanisms of PPCPs enrichment and the transmission of resistance genes in sewer sediments. The results showed that tetracycline (TC) and triclocarban (TCC) have higher adsorption concentration in sediments compared to sulfamethoxazole (SMX). The absolute abundance of Tets and suls genes increased in sediments under PPCPs pressure. The increase in secretion of extracellular polymeric substances (EPS) and the loosening of the structure exposed a large number of hydrophobic functional groups, which promoted the adsorption of PPCPs. The absolute abundance of antibiotic resistance genes (ARGs), EPS and the content of PPCPs in sediments exhibited significant correlations. The enrichment of PPCPs in sediments was attributed to the accumulation of EPS, which led to the proliferation of ARGs. These findings contributed to further understanding of the fate of PPCPs in sewer sediments and opened a new perspective for consideration of controlling the proliferation of resistance genes.


Asunto(s)
Cosméticos , Aguas del Alcantarillado , Sulfametoxazol , Tetraciclina , Contaminantes Químicos del Agua , Sulfametoxazol/análisis , Adsorción , Tetraciclina/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Carbanilidas/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Antibacterianos , Preparaciones Farmacéuticas/análisis , Matriz Extracelular de Sustancias Poliméricas
5.
Bull Environ Contam Toxicol ; 112(5): 67, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668895

RESUMEN

To date, there is an increased risk to public health and the environment due to the presence of pharmaceutically active compounds within drinking water supply and distribution networks. Owing to this, a direct injection-HPLC/MS-MS method was developed for the simultaneous determination of 16 active pharmaceutical compounds in tap water samples: amoxicillin, ampicillin, cephalexin, cefotaxime, cefuroxime, ciprofloxacin, clarithromycin, clindamycin, chloramphenicol, cyproterone, erythromycin, flutamide, spironolactone, sulfamethoxazole, tamoxifen, and trimethoprim. Limits of detection (LOD) ranged from 0.2 to 6.0 µg/L while quantification limits (LOQ) from 0.3 to 20 µg/L. Recovery percentages were between 70 and 125%. Total analysis time was short, with all compounds being resolved in less than 2.1 min. Of the 22 tap water samples collected and analyzed, the highest concentrations corresponded to amoxicillin (147 µg/L) and ciprofloxacin (44 µg/L). The findings could set a precedent for establishing safe levels of these compounds and increasing standards for tap water quality in this region.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión , Agua Potable/química , Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas/análisis , Límite de Detección , Ciprofloxacina/análisis , Abastecimiento de Agua , Amoxicilina/análisis
6.
J Chromatogr A ; 1722: 464866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581976

RESUMEN

The detection of aromatic aldehydes, considered potential genotoxic impurities, holds significant importance during drug development and production. Current analytical methods necessitate complex pre-treatment processes and exhibit insufficient specificity and sensitivity. This study presents the utilization of naphthalenediimide as a pre-column derivatisation reagent to detect aromatic aldehyde impurities in pharmaceuticals via high-performance liquid chromatography (HPLC). We screened a series of derivatisation reagents through density functional theory (DFT) and investigated the phenomenon of photoinduced electron transfer (PET) for both the derivatisation reagents and the resulting products. Optimal experimental conditions for derivatisation were achieved at 40 °C for 60 min. This approach has been successfully applied to detect residual aromatic aldehyde genotoxic impurities in various pharmaceutical preparations, including 4-Nitrobenzaldehyde, 2-Nitrobenzaldehyde, 1,4-Benzodioxane-6-aldehyde, and 5-Hydroxymethylfurfural. The pre-column derivatisation method significantly enhanced detection sensitivity and reduced the limit of detection (LOD), which ranged from 0.002 to 0.008 µg/ml for the analytes, with relative standard deviations < 3 %. The correlation coefficient (R2) >0.998 demonstrated high quality. In chloramphenicol eye drops, the concentration of 4-Nitrobenzaldehyde was measured to be 8.6 µg/mL below the specified concentration, with recoveries ranging from 90.0 % to 119.2 %. In comparison to existing methods, our work simplifies the pretreatment process, enhances the sensitivity and specificity of the analysis, and offers comprehensive insights into impurity detection in pharmaceutical preparations.


Asunto(s)
Aldehídos , Contaminación de Medicamentos , Imidas , Límite de Detección , Naftalenos , Cromatografía Líquida de Alta Presión/métodos , Naftalenos/química , Naftalenos/análisis , Aldehídos/análisis , Aldehídos/química , Imidas/química , Mutágenos/análisis , Mutágenos/química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Benzaldehídos/química , Benzaldehídos/análisis
7.
J Chromatogr A ; 1722: 464830, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608366

RESUMEN

Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.


Asunto(s)
Programas Informáticos , Cromatografía Liquida/métodos , Algoritmos , Péptidos/análisis , Péptidos/química , Proteínas/análisis , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Inteligencia Artificial , Vacunas/química , Vacunas/análisis , Retroalimentación
8.
J Pharm Biomed Anal ; 244: 116128, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598924

RESUMEN

Genotoxic impurities (GTIs) are potential carcinogens that need to be controlled down to ppm or lower concentration levels in pharmaceuticals under strict regulations. The static headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD) is an effective approach to monitor halogenated and nitroaromatic genotoxins. Deep eutectic solvents (DESs) possess tunable physico-chemical properties and low vapor pressure for HS-GC methods. In this study, zwitterionic and non-ionic DESs have been used for the first time to develop and validate a sensitive analytical method for the analysis of 24 genotoxins at sub-ppm concentrations. Compared to non-ionic diluents, zwitterionic DESs produced exceptional analytical performance and the betaine : 7 (1,4- butane diol) DES outperformed the betaine : 5 (1,4-butane diol) DES. Limits of detection (LOD) down to the 5-ppb concentration level were achieved in DESs. Wide linear ranges spanning over 5 orders of magnitude (0.005-100 µg g-1) were obtained for most analytes with exceptional sensitivities and high precision. The method accuracy and precision were validated using 3 commercially available drug substances and excellent recoveries were obtained. This study broadens the applicability of HS-GC in the determination of less volatile GTIs by establishing DESs as viable diluent substitutes for organic solvents in routine pharmaceutical analysis.


Asunto(s)
Disolventes Eutécticos Profundos , Contaminación de Medicamentos , Límite de Detección , Mutágenos , Contaminación de Medicamentos/prevención & control , Cromatografía de Gases/métodos , Mutágenos/análisis , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Disolventes Eutécticos Profundos/química , Disolventes Eutécticos Profundos/análisis , Tecnología Química Verde/métodos , Reproducibilidad de los Resultados , Solventes/química
9.
Chemosphere ; 356: 141973, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608777

RESUMEN

Pharmaceuticals are progressively employed in both human and veterinary medicine and increasingly recognized as environmental contaminants. This study investigated the occurrence of selected pharmaceuticals in influent and effluent of wastewater treatment plants of 12 hospitals in Hanoi and 3 northern cities of Vietnam during dry and rainy seasons. In addition, environmental risk of pharmaceuticals in both hospital influents and effluents were evaluated based on risk quotients (RQs). Nine selected pharmaceutical compounds including sulfamethoxazole (SMX), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), carbamazepine (CBM), iopromide (IOP), atenolol (ATN), and caffeine (CAF) were frequently detected in most influent and effluent wastewaters of 12 investigated hospitals. Detected compound levels exhibited a wide range, from as low as 1 ng/L for DCF to as high as 61,772 ng/L for ACT. Among these compounds, ACT, CAF, SMX, and IOP were consistently detected at substantial concentrations in both influents and effluents. This investigation also highlighted potential risks posed by SMX, ACT, and CAF residues present in influents and effluents of hospital wastewater treatment plants (WWTPs) to aquatic ecosystem. These finding are expected to provide scientific-based evidence for the development of hospital waste management and environmental management programs in Vietnam.


Asunto(s)
Monitoreo del Ambiente , Hospitales , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Vietnam , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Medición de Riesgo , Eliminación de Residuos Líquidos , Humanos
10.
Sci Total Environ ; 928: 172358, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614331

RESUMEN

Pharmaceuticals are one of the emerging pollutants (EPs) in river waters across the world. Due to their toxic effects on aquatic organisms, they have drawn the global attention of the scientific community concerned with river ecosystems. This paper reviews the existing occurrence data for various pharmaceutical pollutants (PPs) reported in river waters in some part of the world and their ecological impacts. Using algae, macroinvertebrates (MI), and fish as biotic indicator groups in water to reflect river health conditions, an attempt has been made to assess the ecological risk due to the presence of PPs in the water environment. After ascertaining the predicted no-effect concentration (PNEC) of PPs for selected groups of aquatic organisms, the risk quotient (RQ) is estimated based on their measured environmental concentration (MEC). When MEC > PNEC and RQ > 1 for any of the biotic indicator, ecologically it is 'high risk' condition. The determination of PNEC uses a minimum assessment factor (AF) of 10 due to uncertainty in data over the no observed effect level (NOEL) or lowest observed effect level (LOEL). Accordingly, MEC 10 times higher than PNEC, (RQ = 10) represents a threshold risk concentration (RCT) beyond which adverse effects may start showing observable manifestations. In the present study, a new classification system of 'high risk' conditions for RQ = 1-10 has been proposed, starting from 'moderately high' to 'severely high'. For RQ > 10, the ecological condition of the river is considered 'impaired'. For river health assessment, in the present study, the whole range of physico-chemical characteristics of river water quality has been divided into three groups based on their ease of measurement and frequency of monitoring. Dissolved oxygen related parameters (DORPs), nutrients (NTs), and EPs. PPs represent EPs in this study. A framework for calculating separate indicator group score (IGS) and the overall river health index (RHI) has been developed to predict indicator group condition (IGC) and river health condition (RHC), respectively. Color-coded hexagonal pictorial forms representing IGC and RHC provide a direct visible perception of the existing aquatic environment and a scientific basis for prioritization of corrective measures in terms of treatment technology selection for river health improvements. The analyses indicate that many rivers across the world are under 'high risk' conditions due to PPs having MEC > PNEC and RQ > 1. Up to RCT, (where RQ = 10), the 'high risk' condition varies from 'moderately high' to 'severely high'. In many instances, RQ is found much more higher than 10, indicating that the ecological condition of river may be considered as 'impaired'. Algae is the most frequently affected group of biotic indicators, followed by MI and fish. A review of treatment methods for selection of appropriate technology to reduce the pollution load, especially PPs from the wastewater streams has been summarized. It appears that constructed wetlands (CWs) are at present the most suitable nature-based solutions, particularly for the developing economies of the world, to reduce the concentrations of PPs within limits to minimize the ecological impacts of pharmaceutical compounds on biotic indicators and restore the river health condition. Some suggestive design guidelines for the CWs have also been presented to initiate the process.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Ecosistema , Organismos Acuáticos/efectos de los fármacos , Animales , Preparaciones Farmacéuticas/análisis , Peces
11.
Artículo en Inglés | MEDLINE | ID: mdl-38640791

RESUMEN

Drug-impaired driving poses a significant risk of collisions and other hazardous accidents, emphasizing the urgent need for simple and rapid roadside detection methods. Oral fluid, as an easily collectible and non-invasive test material, has gained widespread use in detecting drug-impaired driving. In this study, we have devised a method for direct sampling using a carbon fiber bundle combined with flame ionization mass spectrometry. The essence of this method lies in the synergy between the adsorption properties of carbon fiber and the plasma characteristics of the flame. Leveraging the strong adsorption capabilities of the carbon fiber bundle allows for the use of a minimal sample size (<100 µL) during sampling, presenting a distinct advantage in the roadside inspection and sampling process. Throughout the flame ionization process, proteins and salts within the oral fluid matrix adhere well to the carbon fiber bundle, while small molecule targets can be efficiently desorbed and react with charged species in the flame, leading to ionization. The results demonstrate the successful development of carbon fiber-sampling combined flame ionization mass spectrometry, capable of qualitative and quantitative analysis of drugs in oral fluid without the need for sample pre-treatment. Its quantitative capabilities are sufficient for real sample detection, providing an effective analytical method for the roadside detection of drugs in oral fluids.


Asunto(s)
Fibra de Carbono , Saliva , Humanos , Fibra de Carbono/química , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Saliva/química , Límite de Detección , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Ionización de Llama/métodos , Modelos Lineales
12.
J Mass Spectrom ; 59(5): e5029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656528

RESUMEN

Over the past three decades, mass spectrometry imaging (MSI) has emerged as a valuable tool for the spatial localization of drugs and metabolites directly from tissue surfaces without the need for labels. MSI offers molecular specificity, making it increasingly popular in the pharmaceutical industry compared to conventional imaging techniques like quantitative whole-body autoradiography (QWBA) and immunohistochemistry, which are unable to distinguish parent drugs from metabolites. Across the industry, there has been a consistent uptake in the utilization of MSI to investigate drug and metabolite distribution patterns, and the integration of MSI with omics technologies in preclinical investigations. To continue the further adoption of MSI in drug discovery and development, we believe there are two key areas that need to be addressed. First, there is a need for accurate quantification of analytes from MSI distribution studies. Second, there is a need for increased interactions with regulatory agencies for guidance on the utility and incorporation of MSI techniques in regulatory filings. Ongoing efforts are being made to address these areas, and it is hoped that MSI will gain broader utilization within the industry, thereby becoming a critical ingredient in driving drug discovery and development.


Asunto(s)
Descubrimiento de Drogas , Espectrometría de Masas , Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Humanos , Animales , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química , Desarrollo de Medicamentos/métodos , Imagen Molecular/métodos
13.
Sci Total Environ ; 929: 172637, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663604

RESUMEN

The interaction between pharmaceuticals and personal care products (PPCPs) with dissolved organic matter (DOM) can alter their bioavailability and toxicity. Nevertheless, little is known about how pH and DOM work together to affect the availability of PPCPs. This study investigated the impact of pH and DOM on the availability of seven PPCPs, namely Carbamazepine, Estrone, Bisphenol A, Testosterone Propionate, Triclocarban, 4-tert-Octylphenol and 4-n-Nonylphenol, using negligible depletion solid-phase microextraction (nd-SPME). The uptake kinetics of PPCPs by the nd-SPME fibers increased proportionally with DOM concentrations, likely due to enhanced diffusive conductivity in the unstirred water layer. At neutral pH, the partitioning coefficients of PPCPs for Humic Acid (log KDOC 3.87-5.25) were marginally higher than those for Fulvic Acid (log KDOC 3.64-5.11). Also, the log KDOC values correlated linearly with the log DOW (pH 7.0) values of PPCPs, indicating a predominant role for hydrophobic interactions in the binding of DOM and PPCPs. Additionally, specific interactions like hydrogen bonding, π-π, and electrostatic interactions occur for certain compounds, influenced by the polarity and spatial conformation of the compounds. For these ionizable PPCPs, the log DDOC values exhibit a strong dependence on pH due to the dual influence of pH on both DOM and PPCPs. The log DDOC values rose from pH 1.0 to 3.0, peaked at pH 5.0 to 9.0, and then (sharply) declined from 11.0 to 13.0. The reasons are that in strong acidic circumstances, the coiled and compressed shape of DOM inhibits the hydrophobic interaction, whereas in strong alkaline conditions, significant electrostatic repulsion reduces the sorption. This study reveals that the effects of DOM on the bioavailability of PPCPs are dependent on both pH and the specific compound involved.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Cosméticos/análisis , Concentración de Iones de Hidrógeno , Sustancias Húmicas/análisis , Microextracción en Fase Sólida
14.
Talanta ; 274: 126016, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599118

RESUMEN

The present study investigates the use of dextrins (maltodextrin, ß-cyclodextrin, and hydroxypropyl-ß-cyclodextrin) to improve the efficiency of the agarose-based gel electromembrane extraction technique for extracting chiral basic drugs (citalopram, hydroxyzine, and cetirizine). Additionally, it examines the enantioselectivity of the extraction process for these drugs. To achieve these, dextrins were incorporated into either the sample solution, the membrane, or the acceptor solution, and then the extraction procedure was performed. Enantiomers were separated and analyzed using a capillary electrophoresis device equipped with a UV detector. The results obtained under the optimal extraction conditions (sample solution pH: 4.0, acceptor solution pH: 2.0, gel membrane pH: 3.0, agarose concentration: 3 % w/v, stirring rate: 1000 rpm, gel thickness: 4.4 mm, extraction voltage: 62.3 V, and extraction time: 32.1 min) indicated that incorporating dextrins into either the sample solution, membrane or the acceptor solution enhances extraction efficiency by 17.3-23.1 %. The most significant increase was observed when hydroxypropyl-ß-cyclodextrin was added to the acceptor solution. The findings indicated that the inclusion of hydroxypropyl-ß-cyclodextrin in the sample solution resulted in an enantioselective extraction, yielding an enantiomeric excess of 6.42-7.14 %. The proposed method showed a linear range of 5.0-2000 ng/mL for enantiomers of model drugs. The limit of detection and limit of quantification for all enantiomers were found to be < 4.5 ng/mL and <15.0 ng/mL, respectively. Intra- and inter-day RSDs (n = 4) were less than 10.8 %, and the relative errors were less than 3.2 % for all the enantiomers. Finally, the developed method was successfully applied to determine concentrations of enantiomers in a urine sample with relative recoveries of 96.8-99.2 %, indicating good reliability of the developed method.


Asunto(s)
Dextrinas , Geles , Membranas Artificiales , Estereoisomerismo , Dextrinas/química , Geles/química , Electroforesis Capilar/métodos , Hidroxizina/análisis , Hidroxizina/aislamiento & purificación , Hidroxizina/química , Hidroxizina/orina , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Cetirizina/química , Cetirizina/orina , Cetirizina/análisis , Cetirizina/aislamiento & purificación , Concentración de Iones de Hidrógeno , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/aislamiento & purificación , Preparaciones Farmacéuticas/orina , Sefarosa/química
15.
Sci Total Environ ; 930: 172505, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38636851

RESUMEN

Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.


Asunto(s)
Monitoreo del Ambiente , Ríos , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Humanos , Ríos/microbiología , Ríos/química , Ríos/virología , Wisconsin , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Bacterias/aislamiento & purificación , Calidad del Agua , Microbiología del Agua , Virus/aislamiento & purificación
16.
Sci Total Environ ; 923: 171359, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438025

RESUMEN

This study presents the first set of data on the removal of proton pump inhibitors (PPIs) and histamine H2 receptor antagonists (HRAs) and their transformation products in two Romanian wastewater treatment plants (WWTPs), as well as the impact of these organic pollutants on freshwater receiving effluents. The research investigated eight target pharmaceuticals and three metabolites using a newly developed and validated Liquid Chromatography - Mass Spectrometry (LC-MS/MS) method. The combined determination had a range of quantification limits varying from 0.13 ng/L to 0.18 ng/L for surface water and from 0.28 ng/L to 0.43 ng/L for wastewater. All analytes except cimetidine and 5-hydroxy-omeprazole were identified in water samples. The study found similar overall removal efficiencies for both WWTPs (43.2 % for Galati and 51.7 % for Ramnicu-Valcea). The research also showed that ranitidine and omeprazole could pose a low to high ecological risk to aquatic organisms. The findings suggest that the treatment stages used in the two Romanian WWTPs are insufficient to remove the target analytes completely, leading to environmental risks associated with the occurrence of pharmaceutical compounds in effluents and freshwater.


Asunto(s)
Monitoreo del Ambiente , Preparaciones Farmacéuticas , Ríos , Contaminantes Químicos del Agua , Cromatografía Liquida , Omeprazol , Preparaciones Farmacéuticas/análisis , Medición de Riesgo , Ríos/química , Rumanía , Espectrometría de Masas en Tándem , Eliminación de Residuos Líquidos , Agua , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Technol ; 58(12): 5512-5523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478581

RESUMEN

The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.


Asunto(s)
Monitoreo del Ambiente , Ostreidae , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Humanos , Bromofeniramina/análisis , China , Clorfeniramina/análisis , Antagonistas de los Receptores Histamínicos/análisis , Océanos y Mares , Ostreidae/química , Preparaciones Farmacéuticas/análisis , Prometazina/análisis , Contaminantes Químicos del Agua/análisis
18.
Chemosphere ; 356: 141781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554875

RESUMEN

At present the information regarding the occurrence of human pharmaceuticals (PhaCs) in coral reefs and their potential impacts on the associated fauna is limited. To optimize the collection of data in these delicate environments, we employed a solid-phase microextraction (bioSPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) procedure that enabled in vivo determinations in soft corals. Specifically, we researched the antibiotics Ofloxacin Sulfamethoxazole and Clarithromycin, the anti-inflammatory Diclofenac Propyphenazone Ketoprofen and Amisulpride, the neuroactive compounds Gabapentin-lactam, the beta-blocker Metoprolol and the antiepileptic Carbamazepine. Reproducibility was between 2.1% and 9.9% and method detection limits LODs) were between 0.2 and 1.6 ng/g and LOQs between 0.8 and 5.4 mg/g. The method was then applied to establish a baseline for the occurrence of these compounds in the Maldivian archipelago. Colonies of Sarcophyton sp. and Sinularia sp. were sampled along an inner-outer reef transect. Five of the ten targeted PhaCs were identified, and 40% of the surveyed coral colonies showed the occurrence of at least one of the selected compounds. The highest concentrations were found inside the atoll rim. Oxoflacin (9.5 ± 3.9 ng/g) and Ketoprofen (4.5 ± 2.3 ng/g) were the compounds with the highest average concentrations. Outside the atoll rim, only one sample showed contamination levels above the detection limit. No significant differences were highlighted among the two surveyed soft coral species, both in terms of average concentrations and bioconcentration factors (BCFs).


Asunto(s)
Antozoos , Monitoreo del Ambiente , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Animales , Cromatografía Liquida , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Antozoos/química , Preparaciones Farmacéuticas/análisis , Microextracción en Fase Sólida/métodos , Humanos , Islas del Oceano Índico , Arrecifes de Coral , Límite de Detección , Maldivas , Cromatografía Líquida con Espectrometría de Masas
19.
Chemosphere ; 356: 141699, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554874

RESUMEN

Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (µg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (µg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Agua Potable/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Preparaciones Farmacéuticas/análisis
20.
Environ Res ; 249: 118401, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331156

RESUMEN

This study investigates for the first time the contamination of water and sediment of the Venice Lagoon by twenty Contaminants of Emerging Concern (CECs): three hormones, six pharmaceutical compounds (diclofenac and five antibiotics, three of which are macrolides), nine pesticides (methiocarb, oxadiazon, metaflumizone, triallate, and five neonicotinoids), one antioxidant (BHT), and one UV filter (EHMC). Water and sediment samples were collected in seven sites in four seasons, with the aim of investigating the occurrence, distribution, and possible emission sources of the selected CECs in the studied transitional environment. The most frequently detected contaminants in water were neonicotinoid insecticides (with a frequency of quantification of single contaminants ranging from 73% to 92%), and EHMC (detected in the 77% of samples), followed by BHT (42%), diclofenac (39%), and clarithromycin (35%). In sediment the highest quantification frequencies were those of BHT (54%), estrogens (ranging from 35% to 65%), and azithromycin (46%). Although this baseline study does not highlight seasonal or spatial trends, results suggested that two of the major emission sources of CECs in the Venice Lagoon could be tributary rivers from its drainage basin and treated wastewater, due to the limited removal rates of some CECs in WWTPs. These preliminary results call for further investigations to better map priority emission sources and improve the understanding of CECs environmental behavior, with the final aim of drawing up a site-specific Watch List of CECs for the Venice Lagoon and support the design of more comprehensive monitoring plans in the future.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Italia , Plaguicidas/análisis , Preparaciones Farmacéuticas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA